Chapitre $\theta 3$ – Transformations monobares

I) Enthalpie

1) Définition

On appelle **enthalpie** la grandeur :

$$H = U + PV$$

Comme les autres énergies, c'est une fonction d'état extensive et additive.

2) Capacité thermique à pression constante

Lorsqu'un corps subit une variation de température dT à pression constante, son enthalpie varie de dH. On appelle capacité thermique à pression constant :

$$C_P = \left. \frac{\partial H}{\partial T} \right|_P$$

Dans le cas du GP et de la PCI, H ne dépend que T (pas de P). Ainsi,

$$C_P = \frac{dH}{dT}$$

On suppose de plus que C_P est constant.

$$dH = C_P dT \quad \Rightarrow \quad \Delta H = C_P \Delta T$$

Cas du GP

Dans le cas du GP, on a :

$$H = U + PV = U + nRT$$
 \Rightarrow $\frac{dH}{dT} = \frac{dU}{dT} + nR$ \Rightarrow $C_P = C_V + nR$

On définit le coefficient de Laplace du gaz :

$$\gamma = \frac{C_P}{C_V} > 1$$

On en déduit donc :

$$\gamma = \frac{C_V + nR}{C_V} \quad \Rightarrow \quad \boxed{C_V = \frac{nR}{\gamma - 1} \quad \Rightarrow \quad C_P = \frac{\gamma nR}{\gamma - 1}}$$

Cas de la PCI

Dans le cas d'une PCI, sont volume est par définition constant. De plus, on dérive à pression constante. Donc PV = cte.

$$H = U + PV \quad \Rightarrow \quad \frac{dH}{dT} = \frac{dU}{dT} \quad \Rightarrow \quad \boxed{C_P = C_V}$$

Pour une PCI, on note simplement C la capacité thermique du corps, sans préciser à pression ou volume constant.

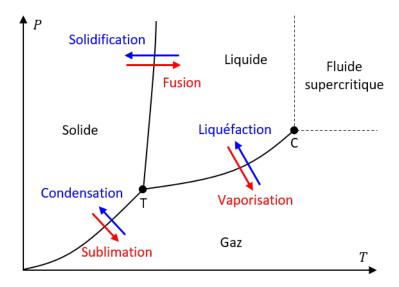
 $\underline{\rm OdG}$: capacité thermique massique de l'eau $c_{\rm eau}=4{,}18~{\rm kJ\cdot K^{-1}\cdot kg^{-1}}$

3) Enthalpie de changement d'état

On considère un changement d'état d'un corps pur à T fixée, donc également à P fixée. On appelle **enthalpie de changement d'état** ou **chaleur latente**, notée $\Delta_{1\to 2}H$ ou $L_{1\to 2}$, l'énergie reçue par le système au cours de la transformation :

$$Corps pur_{(1)} \to Corps pur_{(2)}$$

Les exercices donneront généralement les enthalpies massiques de changement d'état : $\Delta_{1\to 2}h$ ou $\ell_{1\to 2}$.



Pour faire un changement d'état solide \rightarrow liquide \rightarrow gaz, il faut fournir de l'énergie pour briser les interactions (Van der Waals, liaisons H) entre les entités (réactions **endothermiques**). On en déduit donc que :

$$\Delta_{\text{fus}}h$$
 et $\Delta_{\text{vap}}h$ et $\Delta_{\text{sub}}h > 0$

Les réactions inverses sont **exothermiques** :

$$\Delta_{\text{sol}}h = -\Delta_{\text{fus}}h < 0$$
 $\Delta_{\text{lig}}h = -\Delta_{\text{vap}}h < 0$ $\Delta_{\text{con}}h = -\Delta_{\text{sub}}h < 0$

OdG:

- $\circ\,$ enthalpie masse de fusion de l'eau à 0 °C : $\ell_{\rm fus} = 333~{\rm kJ\cdot kg^{-1}}$
- $\circ\,$ enthalpie masse de vaporisation de l'eau à 100 °C : $\ell_{\rm vap} = 2260~{\rm kJ\cdot kg^{-1}}$

II) PP pour des transformations monobares

1) Réécriture du premier principe

Soit un système fermé qui subit une transformation monobare, avec équilibre mécanique dans les états initial et final.

Ainsi,

$$P_{ext} = cte = P_0 = P_1$$

Le premier principe donne :

$$\Delta \mathcal{E}_m + \Delta U = W_{nc} + Q$$
 avec : $W_{nc} = W_{fp} + W_u$

Or, le travail des forces de pression vaut :

$$W_{fp} = -\int_{V_0}^{V_1} P_{ext} dV = -P_{ext} (V_1 - V_0) = -(P_1 V_1 - P_0 V_0)$$

Ainsi, le PP devient :

$$\Delta \mathcal{E}_m + (U_1 - U_0) = -(P_1 V_1 - P_0 V_0) + W_u + Q \quad \Rightarrow \quad \Delta \mathcal{E}_m + \left(\underbrace{U_1 + P_1 V_1}_{= H_1}\right) - \left(\underbrace{U_0 + P_0 V_0}_{= H_0}\right) = W_u + Q$$

PP version enthalpique:

Soit un système fermé qui subit une **transformation monobare**, avec **équilibre mécanique** dans les états initial et final.

$$d\mathcal{E}_m + dH = \delta W_u + \delta Q \quad \Rightarrow \quad \Delta \mathcal{E}_m + \Delta H = W_u + Q$$

Avec tout ce qui précède :

o $\Delta \mathcal{E}_m = \Delta \mathcal{E}_c + \Delta \mathcal{E}_p$ souvent négligé dans les exercices de thermodynamique

- o $\Delta H = C_P \Delta T$ pour GP et PCI pour une transformation qui modifie la température
- o $\Delta H = m \times \Delta_{1 \to 2} h$ pour un changement d'état d'une masse m de l'état $(1) \to (2)$ à T constant

$$\circ W_u = \int \mathcal{P}_u dt$$
$$\circ Q = \int \mathcal{P}_{th} dt$$

2) Application: bilan macroscopique

L'enthalpie étant une fonction d'état, sa variation entre les états 0 et 1 ne dépend pas du chemin réellement suivit par le système pour aller de 0 à 1. On peut donc choisir un chemin fictif sur lequel il est plus simple d'y calculer le ΔH .

 $\underline{\text{Exercice TD}}:$ préparation d'un thé glacé

3) Application: bilan infinitésimal

Lorsque l'on cherche à obtenir l'évolution de T(t), il faut procéder à un PP infinitésimal.

Exercice TD : chauffage d'un bâtiment

III) Expériences de calorimétrie

1) Principe

La calorimétrie désigne l'ensemble des techniques de mesure des transferts thermiques, permettant notamment de déterminer expérimentalement des capacités thermiques.

Les mesures sont faites à pression atmosphérique $P_{ext}=1$ bar dans un calorimètre, dont le rôle est de limiter au maximum les échanges d'énergies avec le milieu extérieur $(Q \simeq 0)$.

2) Application

Exercice TD : expériences de calorimétries